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ABSTRACT

In this paper we develop techniques for computing the relative Brauer

group of curves, focusing particularly on the case where the genus is 1.

We use these techniques to show that the relative Brauer group may be

infinite (for certain ground fields) as well as to determine this group ex-

plicitly for certain curves defined over the rational numbers. To connect

to previous descriptions of relative Brauer groups in the literature, we de-

scribe a family of genus 1 curves, which we call “cyclic type” for which

the relative Brauer group can be shown to have a particularly nice de-

scription. In order to do this, we discuss a number of formulations of

the pairing between the points on an elliptic curve and its Weil–Chatêlet

group into the Brauer group of the ground field, and draw connections to

the period-index problem for genus 1 curves.
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1. Introduction

Let X be a smooth projective curve of genus 1 over a field k. The main objects

of study in this paper are the elements of the Brauer group of k which are

split by the function field of X , i.e., the kernel of the natural homomorphism

Br(k) → Br(k(X)). These elements form a subgroup which we call the relative

Brauer group of X . This group is of interest both from the point of view of

studying the curve X as well as from the point of view of field arithmetic and

the structure of division algebras. From the perspective of the curve X , one

may interpret the relative Brauer group as an obstruction to the existence of a

rational point, related to the so-called “elementary obstruction.” In addition,

it is closely related to the period-index problem. From the point of view of field

arithmetic and division algebras, this type of splitting information for function

fields, and more generally index reduction formulas as in [MPW96], play an

important role in constructing examples and counterexamples (such as Merkur-

jev’s construction of fields with various u-invariants [Lam89]). Unfortunately,

such information is only known for very special varieties at this point, such as

for projective homogeneous varieties under a linear algebraic group. In particu-

lar, in the case of curves, until recently, one only had a complete description of

the relative Brauer group when the genus was 0. In [Han03], the relative Brauer

groups of certain genus 1 hyperelliptic curves were described in a surprisingly

tractable way.

In this paper we introduce tools for computing these relative Brauer groups,

and we introduce the notion of a curve of “cyclic type” in order to explain

when particularly nice descriptions of the relative Brauer group may be given

as in [Han03]. The present paper has been used in [HHW10] to obtain ex-

plicit descriptions of the relative Brauer group for certain plane cubic curves,

and in [Kuo], which uses generalized Clifford algebra constructions to study

a somewhat more general class of curves. These tools are also applied to the

period-index problem and the elementary obstruction.

A main ingredient in this paper is a number of reformulations of the pairing

of Tate relating to points on an elliptic curve and the elements of its Tate–

Shafarevich group. Some of these results appear in the literature, and we cite

results of Bashmakov [Baš72] and Lichtenbaum [Lic69] to obtain some of these.

Although we don’t make the claim that the other reformulations in this paper

are necessarily new, we were unable to obtain references in the literature after
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talking to experts in the area, and in any case, we believe that it is of value to

collect some of these results together as we do here.

The contents of this paper are as follows. Section 2 presents the basic relation-

ship between the relative Brauer group, the Picard variety and the period-index

problem in terms of a surjective map

aX : Pic(X)(k) → Br(k(X)/k)

for a smooth projective variety X over k. In Section 3 we give a number of

different interpretations of the map aX in terms of pairings and in Section 4 we

use these to give a number of applications: In Section 4.1 we show that if X is

a homogeneous space for an elliptic curve E of cyclic type (Definition 4.2) with

respect to the subgroup T ⊂ E, then we have an exact sequence (generalizing

[Han03]), where E′ = E/T ,

E′(k)
φ �� E(k)

aX �� Br(k(X)/k) �� 0,

and where φ is dual to the isogeny with kernel T . We further give an interpre-

tation of the map aX in terms of a natural cup product. In Section 4.2, we give

a generalization of a result of Cassels ([Cas62]) that the period and index must

coincide for an element of the Tate–Shafarevich group. In Section 4.3 we relate

the relative Brauer group to the elementary obstruction (see Definition 1.4) and

prove

Theorem 4.9: Suppose X is a homogeneous space for an elliptic curve E

defined over k and X(k) = ∅. Then Br
(
Xk(E)/k(E)

) �= 0 — i.e., the relative

Brauer group must be nontrivial when one extends scalars to the function field

of E.

It follows from this (see Corollary 4.10) that if X(k) �= ∅ for X as above,

then there exists a field extension K/k such that the elementary obstruction for

XK is nontrivial. In Section 4.4 we show that the relative Brauer group of any

smooth projective variety X is always finite when k is local or finitely generated

over a prime field (Proposition 4.11), however we construct in Theorem 4.12

certain fields k, and genus 1 curves X/k, such that the relative Brauer group

Br(k(X)/k) is infinite.
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Finally, in Section 5 we show that the relative Brauer group may be com-

puted algorithmically. The algorithms described in this section have been im-

plemented (in certain cases) as a Macaulay2 [M2] package “Relative Brauer,”

freely available at the second author’s webpage [Kra07]. This package uses pari

as well [par], and may be used to produce examples of relative Brauer groups

for certain homogeneous spaces of elliptic curves defined over Q. Some of the

examples in this paper were produced using this program.

Although this paper is concerned principally with the computation of relative

Brauer groups, one is often also interested in the more precise question of how

to calculate the index of αk(X) for a general class α in the Brauer group of k.

In [KL08], the second author jointly with M. Lieblich has shown that this more

general problem of index reduction for a genus 1 curve may be entirely reduced

to the problem discussed in this paper of computing the relative Brauer group.

1.1. Definitions and notation. Throughout the paper we will consider an

arbitrary ground field k, and we will denote by ksep a fixed separable closure.

We denote the absolute Galois group Gal(ksep/k) by G. Unless specified other-

wise, all cohomology groups should be interpreted as étale cohomology, and in

particular, Hi(k,A) coincides with the Group cohomology Hi(G,A).

Definition 1.1: For a k-scheme X , we define the index of X to be

ind(X) = gcd{[E : k]|E/k is a finite field extension and X(E) �= ∅}.
In the case that X is a genus 1 curve, it follows from [Lic68] that this coincides

with the same gcd taken only over degrees of separable field extensions.

For a smooth proper variety X , we denote its Picard group by Pic(X). We

define Pic(X) to be the sheafification of the fppf -presheaf

S �→ Pic(X ×k S).

This is represented by a k-group scheme (see [Mur64, II.15]), which, by abuse

of notation, we also denote by Pic(X). This is projective in case X is (see

[FGI+05, Chap. 9, Thm. 9.5.4]. We let Pic0(X) denote the subgroup of Pic(X)

consisting of those divisor classes which are algebraically equivalent to 0, and

we recall that the Picard variety of X , denoted Pic0(X), is the corresponding

subscheme of Pic(X). We recall that Pic(X) is an abelian variety if X is either

a curve [FGI+05, Chap. 9, Ex. 9.5.23, pages 289, 309] or an abelian variety
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[Mum70, III.13]. Since X has a point after some finite separable field exten-

sion [Lan72, Prop. 10, page 76], it follows from [FGI+05, Chap. 9, Thm. 9.2.5]

that Pic(X) may be considered also as the étale sheafification of the above

presheaf. In particular, we may describe the k-points of Pic(X) as Pic(X)(k) =

(Pic(Xksep))G. For every G-fixed element of the Neron–Severi group λ ∈
NS(Xksep)G, we may consider the subscheme Picλ(X) ⊂ Pic(X) of divisors

of X in the class λ. These are principal homogeneous spaces for the abelian

variety Pic0(X). Note that in the case of a curve, we may identify NS(X) =

NS(Xksep)G ∼= Z by the degree map on divisors, and hence we may denote

classes by integers. We recall that the collection of all principal homogeneous

spaces for an abelian variety A/k may be identified with the torsion abelian

group H1(k,A), which is also called the Weil–Chatelet group of A.

Definition 1.2: Let X be a smooth projective curve over k. We define the

period of X to be the order of the class [Pic1(X)] in H1(k,Pic0(X)).

For a k-scheme X , we let Br(X) denote the Brauer group of equivalence

classes of Azumaya algebras, and for a ring R, we write Br(R) for Br(Spec(R)).

In the caseX is a smooth and quasi-projective variety, we may identify Br(X) =

H2(X,Gm) by the result of Gabber/de Jong (see [dJ]), and we have an injection

Br(X) ↪→ Br(k(X)) (see [Gro68a, Gro68b, Gro68c]).

Definition 1.3: Given a morphism of schemes Y → X , we define the rela-

tive Brauer group, written Br(Y/X), as the kernel of the pullback map

Br(X) → Br(Y ).

We will frequently abuse notation and write Br(Y/R) if X = Spec(R) is

affine, or Br(S/R) if Y = Spec(S), and so on.

We recall the definition of the elementary obstruction:

Definition 1.4 ([CTS87, Defn. 2.2.1]): Let X be a smooth geometrically integral

variety over k, and consider the exact sequence of Galois modules

0 → (ksep)∗ → ksep(X)∗ → ksep(X)∗/(ksep)∗.

The elementary obstruction ob(X) is by definition the class of this extension of

G modules in Ext1G(k
sep(X)∗/(ksep)∗, (ksep)∗).

Proposition 1.5 ([CTS87, Prop. 2.2.2(a)]): Suppose X is a smooth geometri-

cally integral variety over a field k and X(k) �= ∅. Then ob(X) vanishes.
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2. The Picard variety, the period and the index

If X is a smooth projective variety over a field k, there is a well-known natural

surjective map

aX : Pic(X)(k) → Br(k(X)/k)

which will be a critical tool in our description of the relative Brauer group.

Particularly important will also be the restriction of this map to the divisor

classes algebraically equivalent to 0.

We define the map aX as follows. Consider the short exact sequence of G-

modules

(1) 0 �� ksep(X)∗/(ksep)∗ �� Div(Xksep) �� Pic(Xksep) �� 0.

Since ksep(X)/k(X) is a G-Galois extension, we may use Hilbert’s Theorem 90

to identify

H1(G, ksep(X)∗/(ksep)∗) ∼=ker
(
Br(k) → Br(k(X))

)
=Br(k(X)/k) = Br(X/k).

Using this, the long exact sequence in cohomology from sequence 1 gives the

desired map:

aX : Pic(X) → Br(k).

We now investigate the restriction of this map to the divisor classes of

degree 0. Let NS(X) be the Nerón–Severi group Div(X)/Div0(X), where

Div0(X) is the group of divisors which are algebraically equivalent to 0. The

group NS(Xksep) comes with an action of the Galois group G, and the short

exact sequence

0 �� Pic0(Xksep) �� Pic(Xksep) �� NS(Xksep) �� 0

gives rise to a boundary map

NS(Xksep)G → H1(k,Pic0(X)(ksep)).

Note that Div(Xksep)G = Div(X). We define in NS(Xksep)G two subgroups

i(X) and p(X) as follows:

i(X) = im
(
Div(X) → NS(Xksep)G

)
= im

(
NS(X) → NS(Xksep)G

)
,

p(X) = ker
(
NS(Xksep)G → H1(k,Pic(X))

)
.
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These groups have been defined and studied independently by Peter Clark (see

[Cla]).

Theorem 2.1: Let X be a smooth projective variety over k. Then we have

exact sequences

0 �� Pic(X) �� Pic(X)(k)
aX �� Br(X/k) �� 0,

0 �� Pic0(X) �� Pic0(X)(k)
aX �� Br(X/k) �� p(X)/i(X) �� 0.

Remark 2.2: If X is a smooth projective curve, this is in essence done by Licht-

enbaum in [Lic69]. In this case, we note that NS(Xksep) is simply isomorphic

to Z by associating to every divisor its degree. In particular, we observe in this

case i(X) = ind(X)Z. Further, it follows from [Lic69] that the boundary map

NS(Xksep)G ∼= Z → H1(k,Pic(X)) sends 1 to the class of the homogeneous

space Pic1(X), and so we obtain p(X) = per(X)Z. We therefore see that the

failure of surjectivity of aX |Pic0(X)(k) exactly describes the obstruction for the

period and index of the curve X to coincide.

Corollary 2.3: Suppose X is a curve with ind(X) = per(X). Then the map

a is surjective.

Proof of Theorem 2.1. Identifying Pic(X) with the image in Pic(X)(k) =

Pic(Xksep)G of Div(X), we obtain from the long exact sequence in cohomol-

ogy from sequence 1

0 → Pic(X) → Pic(X)(k) → Br(k) → Br(X),

which immediately gives us the first part of the theorem.

For the second part, let Br0(X/k) = aX(Pic0(X)(k)). Using the morphism

of exact sequences:

0 �� ksep(X)∗/(ksep)∗ �� Div0(Xksep)

��

�� Pic0(Xksep) ��

��

0

0 �� ksep(X)∗/(ksep)∗ �� Div(Xksep) �� Pic(Xksep) �� 0
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We obtain an inclusion of short exact sequences:

(2) 0 �� Pic0(X)� �

��

�� Pic0(X)(k)� �

��

�� Br0(X/k)� �

��

�� 0

0 �� Pic(X) �� Pic(X)(k) �� Br(X/k) �� 0

Using the long exact sequence associated to the sequence

0 �� Pic0(Xksep) �� Pic(Xksep) �� NS(Xksep) �� 0

we may identify

p(X) = coker
(
Pic0(X) → Pic(X)),

and using the sequence

0 �� Div0(Xksep) �� Div(Xksep) �� NS(Xksep) �� 0

together with the fact that the map Div(X) = Div(Xksep)G → NS(Xksep)G

factors through the surjective map Div(X) → Pic(X), we may also identify

i(X) = coker
(
Pic0(X)(k) → Pic(X)(k)

)
.

Therefore, applying the snake lemma to sequence 2 gives an exact sequence of

cokernels:

0 → i(X) → p(X) → Br(X/k)

Br0(X/k)
→ 0,

which gives, via the definition of Br0(X/k),

0 → Pic0(X) → Pic0(X)(k) → Br(X/k) → p(X)/i(X) → 0,

as desired.

3. Pairings and the map aX

In this section we show that the map aX constructed above may be interpreted

in a number of ways in terms of pairings. We will afterwards use these different

interpretations to prove new results concerning relative Brauer groups in section

4.

Throughout, we will abuse notation and write aγ instead of aX in the case

that X is a genus 1 curve corresponding to a cohomology class γ ∈ H(k,E) for

an elliptic curve E.
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3.1. The Tate pairing.

Theorem 3.1 ([Lic68]): Let A be an abelian variety over a field k, and consider

the Tate pairing

〈 , 〉 : H1(k,A)×Pic0(A)(k) → Br(k).

In the case A is an elliptic curve, we have 〈γ, p〉 = aγ(p).

Proof. This may be found in [Lic68, pages 1213–1216]. Since it is not explicitly

stated as a theorem in this paper, we note that on page 1213 of [Lic68], Licht-

enbaum defines the pairing due to Tate, on page 1215 he defines the pairing

coming from a, and in pages 1215–1216 he proves that these coincide.

For future reference, let us also recall the definition of the Tate pairing. Let

A be an abelian variety over k. Denote by Z(A) the group of 0-dimensional

cycles on Aksep of degree 0, and by Y (A) the Albanese kernel of A defined by

the exact sequence

0 → Y (A) → Z(A) → A(ksep) → 0.

Let D ⊂ A × Pic0(A) be a Poincaré divisor and let π1, π2 be the projection

maps from A × Pic0(A) to A and Pic0(A), respectively. We define Z(A)D

(respectively Y (A)D) to be the subgroup of Z(A) (resp. Y (A)) of elements α,

such that π−1
1 (|α|) transversely intersects D, where |α| is the support of α. Note

that we have a well defined map

π2

(
π−1
1 ( ) ∩D

)
: Z(A)D → Div(Pic0(A)ksep).

Since this agrees with the cycle theoretic map (π2)∗ (π∗
1(α ·D)), and since the

elements of Y (A) are rationally equivalent to 0, it follows that the image of this

map is always a principal divisor, giving us actually a map

π2

(
π−1
1 ( ) ∩D

)
: Y (A)D → ksep(A)∗/(ksep)∗.

To define the Tate pairing, we start with a class γ ∈ H1(k,A(k)), and let

α ∈ H2(k, Y (A)) be its image under the connecting homomorphism. Choose a

representative cochain α for α and choose a Poincaré divisor D transversal to

|α|. Consider the ksep(A)∗/ksep∗-valued cocycle β = π2

(
π−1
1 (α) ∩D

)
. Since

A(k) �= ∅, the elementary obstruction for A vanishes (Proposition 1.5), and

consequently, we may lift the class of β to a class β̃ ∈ H2(k, ksep(A)∗) which

turns out to be unramified — i.e., an element of H2(A,Gm) = Br(A). By
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changing β̃ by a constant class from Br(k), we may assume that β̃ is trivial

when specialized to the identity 0 ∈ A(k). The pairing is then defined by

〈γ, p〉 = β̃|p.

3.2. Pairing via specializations of Brauer classes. Let X be a smooth

projective variety over k with a rational point x ∈ X(k). Recall that the group

Br(Xksep/X, x) is defined to be the subgroup of Br(Xksep/X) consisting of those

Brauer classes α such that the specialization of α at x is trivial.

Lemma 3.2: We have an isomorphism

H1(k,Pic(X))
∼ �� Br(Xksep/X, x)

γ
� �� Aγ ,

defined as follows. Consider the exact sequence

(3) 0 �� ksep(X)∗/(ksep)∗ �� Div(Xksep) �� Pic(X)(ksep) �� 0.

For γ ∈ H1(k,Pic(X)), take the image of γ under the connecting homomor-

phism in the first exact sequence. This is an element γ̃ ∈ H2(k,Prin(X)) =

H2(k, ksep(X)∗/(ksep)∗). Any lift of this class to H2(k, ksep(X)∗) will be an el-

ement of the unramified Brauer group of X , and we define Aγ to be the unique

class in H2(k, ksep(X)∗) lifting it which is unramified and is trivial when spe-

cialized to the point x.

Remark 3.3: Note that we abuse notation here in that Aγ depends on a partic-

ular choice of point x. In the case which will be especially useful to us, X will

be an abelian variety, and in this case, we will always take the point x to be

the identity 0 ∈ X(k).

Remark 3.4: We will often wish to consider classes γ in H1(k,Pic0(X)). We

abuse notation in this case and write Aγ to denote the Brauer class associated

to the image of γ in H1(k,Pic(X)).

We will use this lemma to prove the following alternate formulation of the

Tate pairing:

Theorem 3.5: Let A be an abelian variety over k, and B = Pic0(A) its dual.

Let α ∈ H(k,B(ksep)), and choose Xα a homogeneous space in the class α.
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Then for each p ∈ A(k) we have

〈α, p〉 = aXα(p) = Aα|p.
We now give a proof of the lemma, followed by a proof of this theorem.

Proof of Lemma 3.2. Since Div(Xksep) has a basis which is permuted by the

Galois group, it follows that H1(k,Div(Xksep)) = 0 (see for example [Sal99,

Lemma 12.3]). We therefore obtain from (3) an exact sequence

(4) 0 → H1(k,Pic(X)) → H2(k, ksep(X)∗/(ksep)∗) → H2(k,Div(X)).

Using Proposition 1.5, we see that since X(k) �= ∅, we have a split exact

sequence

0 → (ksep)∗ → ksep(X)∗ → ksep(X)∗/(ksep)∗ → 0,

and therefore we obtain an exact sequence

(5) 0 → Br(k) → Br(ksep(X)/k(X)) → H2(k, ksep(X)∗/(ksep)∗) → 0.

The map ksep(X) → Div(Xksep) induces a map

ram : Br(ksep(X)/k(X)) → H2(k,Div(Xksep))

called the ramification map1, and ker(ram) = Br(X). Let us denote the kernel

of the map

H2(k, ksep(X)∗/(ksep)∗) → H2(k,Div(Xksep))

by H2,nr(k, ksep(X)∗/(ksep)∗). Using sequence (5) we find we have an exact

sequence

0 → Br(k) → Br(Xksep/X) → H2,nr(k, ksep(X)∗/(ksep)∗) → 0

and an identification H2,nr(k, ksep(X)∗/(ksep)∗) = H1(k,Pic(X)). Again using

the fact that X has a rational point, we may use specialization of Brauer classes

at the point x to split the map Br(k) → Br(X), yielding an isomorphism

Br(Xksep/X, x) ∼= H1(k,Pic(X)),

as desired.

1 Although this is perhaps not the standard definition of the ramification map, this defi-

nition is shown to be equivalent in [GS06] to the standard one, as defined, for example,

in [Sal99, Chapter 10]. Here our map is given in [GS06, Section 6.6] equation (6), page

152, and is reformulated on the following page as being equivalent to (the sum of) the

standard ramification maps over all closed points.
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Remark 3.6: We note that it follows from this proof that in fact we may express

the relative Brauer group Br(Xksep/X) as a product

Br(Xksep/X) ∼= Br(k)×H1(k,Pic(X)).

Further, in the case that X is a curve, H1(k,Pic(X)) = H1(k,Pic0(X)), which

follows from the fact that

0 → Pic0(X)(ksep) → Pic(X)(ksep) → Z → 0

is split exact (since X(k) �= ∅), and H1(k,Z) = 0.

Proof of Theorem 3.5. It is not hard to check that the operation πB( ∩ D)

gives a commutative diagram of sets:

(6) 0 �� Prin(B) �� Div0(B) �� A(ksep) �� 0

Y (A)D

��

� �

��

�� Z(A)D

��

� �

��

�� A(ksep)

0 �� Y (A) �� Z(A) �� A(ksep) �� 0

where the top and bottom rows are exact sequences of abelian groups with

Galois action. The pairing of Tate is obtained by the composition of the con-

necting homomorphism from the bottom of diagram (6) on elements which lie

in the middle row followed by the upwards vertical map, while the pairing using

A uses the connecting homomorphism on the top of the diagram. The result

therefore follows immediately from commutativity of the diagram and equality

of the rightmost terms.

3.3. Pairings via torsion points. For an elliptic curve E over k and an

integer n prime to the characteristic of k, we will let en denote the Weil pairing

E[n]⊗Z E[n] → μn. We let δn : E(k) → H1(k,E[n]) denote the boundary map

from the Kummer sequence:

(7) 0 → E[n] → E
n→ E → 0.

Theorem 3.7: Let E be an elliptic curve over k, let p ∈ E(k) and γ ∈
H1(k,E[n]), and let Xγ be a homogeneous space in the class γ. Then

〈γ, p〉 = en(γ ∪ δnp) = aXγ (p) = Aγ |p,
where γ is the image of γ in H(k,E).
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Proof. It follows from [Baš72, Prop. 9] that 〈γ, p〉 = en(γ∪δnp). The remaining

assertions follow from Theorem 3.5.

4. Applications

4.1. Pairings via cyclic isogenies. Let E be an elliptic curve, and suppose

we are given a finite Galois submodule T ⊂ E. We obtain an isogeny, uniquely

defined up to isomorphism [Sil92, III.§4, Prop. 4.12]:

(8) 0 → T → E
φ→ E′ → 0,

for an elliptic curve E′ and a dual isogeny, also unique up to isomorphism [Sil92,

III.§6, Thm. 6.1]:

(9) 0 → T ′ → E′ φ′
→ E → 0.

We say that T ⊂ E is cyclic if its points defined over a separable closure are

cyclic as an abstract group. In other words, T is a closed reduced subscheme of

E such that T (ksep) is a cyclic subgroup of E(ksep).

Proposition 4.1: Suppose that T ⊂ E is a cyclic submodule of order n with

n prime to the characteristic of k, and let E′, T ′ be as above. Then there is a

natural isomorphism of G-modules:

T ⊗Z T ′ ∼= μn.

Further, if i : T → E[n] is the inclusion and p = φ|E[n], then this isomorphism

is given by t⊗ t′ �→ en(it, p
−1t′).

Proof. If i : T → E[n] is the natural inclusion, it is easy to see that we obtain

a commutative diagram with exact rows:

(10) 0 �� T ��

i
��

E
φ �� E′ ��

φ′
��

0

0 �� E[n] ��

p
��

E

φ
��

n �� E �� 0

0 �� T ′ �� E′
φ′

�� E �� 0



934 M. CIPERIANI AND D. KRASHEN Isr. J. Math.

which by the snake lemma (applied to the bottom two sequences) gives a short

exact sequence

(11) 0 → T
i→ E[n]

p→ T ′ → 0,

where i is induced by the natural inclusion and p is induced by the map φ.

Consider the Weil pairing

en : E[n]⊗Z E[n] → μn.

Since this pairing is alternating, we have en(T, T ) = 0, and so we have an

induced non-degenerate pairing T ⊗Z E[n]/T → μn. But by equation (11),

we obtain a non-degenerate pairing T ⊗Z T ′ → μn. Since this is clearly an

isomorphism ignoring the Galois action, this gives an isomorphism of Galois

modules T ⊗Z T ′ ∼= μn as desired.

Definition 4.2: Let X be a homogeneous space for E of period n = per(X).

We say that X has cyclic type if its cohomology class in H1(k,E) may be

represented as the image of a cocycle γ ∈ H1(k, T ), where T ⊂ E is a cyclic

submodule of order n.

The following observation shows that cyclic homogeneous spaces are some-

what special:

Proposition 4.3: Suppose X is a cyclic homogeneous space for E. Then

per(X) = ind(X).

Proof. Choose a particular Galois cocycle γ ∈ Z1(G, T ) representing X . Via

Galois descent, we may describeX as given by the curveEksep equipped with the

new Galois action σ ·p = σ(p)⊕γ(σ). Let φ : E → E′ be the isogeny with kernel

T . Consider the isogeny φX : Xksep → E′
ksep given after the above identification

by φ×k k
sep. We claim that this descends to give a morphism X → E′. To see

this we need to check σ(φ(p)) = φ(σ · p). But since γ(σ) ∈ T = ker(φ), we have

φ(σ · p) = φ(σ(p) ⊕ γ(σ)) = φ(σ(p)) ⊕ φ(γ(σ)) = φ(σ(p)) = σ(φ(p)).

Now, since we have a n to 1 étale cover X → E′, the preimage of the ori-

gin in E′ gives a separable point in X of degree n over k, and therefore

ind(X)|n = per(X). But since per(X)| ind(X) holds for any curveX , these must

be equal.
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Lemma 4.4: Let E,E′, T, T ′, φ, φ′ be as above. Let

δφ′ : E(k) → H1(k, T ′)

be the boundary map of the exact sequence (8), and let

δn : E(k) → H1(k,E[n])

be the boundary map from the Kummer sequence (7). Then we have for γ ∈
H1(k, T ) and x ∈ E(k) (and via the identification of Lemma 4.1)

γ ∪ δφ′x = en(iγ ∪ δnx).

Before proving this lemma, we will derive the following consequence, gen-

eralizing aspects of the descriptions of the relative Brauer group obtained in

[Han03]:

Theorem 4.5: Let E,E′, T, T ′, φ, φ′, δ′φ be as above. Let X be a genus 1 curve

coming from a cocycle γ ∈ H1(k, T ) of order n as above. Then we have a

surjective map

E(k)
aX �� Br(k(X)/k)

with φ′ : E′(k) → E(k) mapping into the kernel of aX and with aX given by the

formula: aX(x) = γ ∪ δφ′x, where we identify T ⊗Z T ′ ∼= μn as in Lemma 4.1.

Remark 4.6: For certain cases of T , one may show that the resulting algebras

aX(x) are cyclic as follows:

If T ∼= Z/n, then an element γ ∈ H1(k, T ) corresponds to a cyclic extension

of degree n splitting aX(x). Such an algebra is therefore represented by a cyclic

algebra of degree n.

In the case that T has odd order, and that there exists a quadratic extension

L/k such that TL
∼= Z/n, and such that, after setting M/L to be the cyclic

extension corresponding to γ ∈ H1(kL, TL), we have that M/k is Galois with

Galois group Gal(M/L)�Gal(L/k), then in the case that k contains a primitive

nth root of unity, it follows from [RS82] that aX(x) may be represented by a

cyclic algebra of degree n. More generally, it follows from [HKRT96, Prop. 2.8]

that the same result holds even in the case that μn is contained in any quadratic

extension of k.

In the case that n is a prime and T ∼= μn, γ ∈ H1(k, T ) corresponds to a

Kummer extension splitting aX(x), and in this case it follows from Albert’s

result [Jac96, Thm. 2.11.12, page 82] that aX(x) is a cyclic algebra.
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Proof of Lemma 4.4. Choose x ∈ E(k) and γ ∈ H1(k, T ) and choose

y ∈ E(ksep) with [n]y = x. By the commutativity of diagram (10), z = φ(y)

satisfies φ′(z) = x. Therefore we have δφ′(x)(σ) = σ(z)− z, δn(x)(σ) = σ(y)− y

for σ ∈ Gal(k). We now compute

−γ ∪ δφ′(x)(σ, τ) = (σz − z)⊗ σ(γ(τ))

= (σ(φy)− φy)⊗ σ(γ(τ))

= φ(σy − y)⊗ σ(γ(τ))

= p (σy − y)⊗ σ(γ(τ)).

Considering the isomorphism of Proposition 4.1, this gives

−γ ∪ δφ′(x)(σ, τ) = en ((σy − y)⊗ iσ(γ(τ)))

= en ((σy − y)⊗ σ(iγ(τ)))

= −en(δnx ∪ iγ)(σ, τ).

Proof of Theorem 4.5. We start with the sequence

0 �� Pic0(X) �� Pic0(X)(k)
aX �� Br(X/k) �� p(X)/i(X) �� 0

of Theorem 2.1, and identify E = Pic0(X). Using Theorem 3.7, we see that

we may represent the map aX as a cup product from the torsion points of the

elliptic curve E. Using Lemma 4.4, we may further interpret this as coming

from the pairing coming from the pair of dual isogenies with kernels T and T ′.
By Proposition 4.3, we have thet the period and the index of X must coincide,

and therefore by Corollary 2.3, the map aX is surjective.

4.2. Period and index. Since the Hasse principle holds for elements of Br(k)

for k global, we obtain information about i(X) and p(X) from local data (see

section 2 for the definitions of these invariants). In particular, we have a simple

generalization of a result of Cassels (see [Cas62], [O’N02], see also [Cla06]), the

proof being an adaptation of the ideas of [O’N02] and [Cla06] to the present

context. This may also be seen as a “divisorial” analog to [Ols70, Cor. 16].

Theorem 4.7: Suppose k is a global field, and let X/k be a smooth projective

variety. Then if Xv(kv) �= ∅ for all but possibly one valuation v on k, then

p(X) = i(X).
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Proof. It suffices to see that these conditions force the relative Brauer group

of X to be trivial. If α ∈ Br(X/k), we note that αkv ∈ Br(Xkv/kv) for every

valuation v. By the hypothesis and by Corollary A.3 in Appendix A, we have

αkv = 0. This means that all except possibly one of the Hasse invariants of α

vanishes. But by reciprocity, the sum of the Hasse invariants is 0, implying that

α = 0.

This immediately implies the result of Cassels [Cas62]:

Corollary 4.8: If E is an elliptic curve and [X ] ∈ X(E), then per(X) =

ind(X).

4.3. The elementary obstruction. The following result says that a non-

trivial homogeneous space may always be detected by its relative Brauer group,

at least after extending the ground field:

Theorem 4.9: Suppose X is a homogeneous space for an elliptic curve E

defined over k and X(k) = ∅. Then Br
(
Xk(E)/k(E)

) �= 0 — i.e., the relative

Brauer group must be nontrivial when one extends scalars to the function field

of E.

Proof. Let [X ] denote the class of X in H1(k,E), and let A = A[X]. It fol-

lows from Theorem 3.5 that if we consider the generic point η ∈ E(k(E)), then

aX(η) = A|η is an element of the relative Brauer group Br(Xk(E)/k(E)). Fur-

ther, since the isomorphism of Lemma 3.2 maps the class [X ] to the algebra A,

it follows that A is a nontrivial Brauer class. Since restriction to the generic

point gives an injection Br(E) → Br(k(E)), it also follows that Aη is nontrivial.

Therefore Br(Xk(E)/k(E)) �= 0 as claimed.

Corollary 4.10: Let X be a curve of genus 1 over k and suppose X(k) �= ∅.
Then there exists a field extension K/k such that the elementary obstruction

for XK is nontrivial.

Proof. For this, we simply let K = k(E) where E is the Jacobian of X . In this

case it follows from Theorem 4.9 that the relative Brauer group Br(K(X)/K)

is nontrivial. But this implies that the elementary obstruction must also be

nontrivial: arguing by contradiction, assume ob(XK) = 0. In this case there

exists a splitting Ksep(X)∗ → (Ksep)∗, and in particular, the morphism

Br(K) = H2(K, (Ksep)∗) → H2(K,Ksep(X)∗) = Br(K(X))
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is also split injective. But this implies that its kernel Br(K(X)/K) must be

trivial, yielding a contradiction.

4.4. How big is the relative Brauer group? The following result is a con-

sequence of our results combined with the theorem of Lang and Néron [LN59],

and is known by the experts.

Proposition 4.11: Suppose that X is a smooth projective variety defined over

a field k which is local or finitely generated over Q. Then Br(k(X)/k) is finite.

Proof. In the case that k is local this is immediate from [Roq66, Thm. 1]. If k

is finitely generated over its prime field, we consider the map

aX : Pic0(X)(k) → Br(k(X)/k),

which has finite cokernel by Theorem 2.1. Further, since the Brauer group is

torsion, it is enough to show that Pic0(X)(k) is finitely generated. But, since

in this case Pic0(X) is an abelian variety over k, this follows from the work of

Lang and Néron [LN59].

Theorem 4.12: Suppose that E is an elliptic curve defined over a field k, and

suppose X is a nontrivial homogeneous space over E. Then there exists a field

extension L/k such that the relative Brauer group Br(L(X)/L) is infinite.

Lemma 4.13: SupposeX is a nontrivial homogeneous space for an elliptic curve

E. Then if L = k(E), there is a Brauer class 0 �= α ∈ Br(XL/L) and an injection

Br(X/k)⊕ 〈α〉 ↪→ Br(XL/L).

Proof. Let η ∈ E(L) be the generic point, and let α = aX(η). By Lemma A.1,

the map Br(k) → Br(L) is injective. By Theorem 3.5 and Theorem 4.9, the

element α is the restriction of the Brauer class A(X) ∈ Br(E, 0E) ⊂ Br(E) to

the generic point η ∈ E, and α �= 0.

Using Lemma 3.2, we may write Br(E, 0E) ⊕ Br(k) = Br(E) ↪→ Br(L). In

particular, since α ∈ Br(E, 0E) and Br(X/k) ⊂ Br(k), the groups 〈α〉 and

Br(X/k) do not intersect considered as subgroups of Br(XL/L) ⊂ Br(L). In

particular, we obtain an injection Br(X/k)⊕〈α〉 ↪→ Br(XL/L) as claimed.

Proof of Theorem 4.12. Suppose X is a homogeneous space of index n. We will

begin by reducing to the case that n is prime. This is not essential for the result,

but helps the exposition of the proof. Let p be a prime divisor of n, and let F ′/k
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be a prime to p closure of k. Note that X(F ′) = ∅ still with ind(X ′
F ) = pk.

Since every field extension has degree a power of p, we have

ind(XF ′) = gcd{[E : F ′]|X(E) �= ∅} = min{[E : F ′|X(E) �= ∅}.
Consequently, there is a field E/F ′ of degree pk with X(E) �= ∅. Since F ′

is prime to p-closed, it follows that there is an intermediate field extension

F ′ ⊂ F ⊂ E with [F : F ′] = pk−1. Consequently, XF has index exactly p.

We will construct a chain of field extensions of F ,

F = L0 ⊂ L1 ⊂ L2 ⊂ · · · ,
such that (Z/p)i ⊂ Br(XLi/Li), and Br(XLi−1/Li−1) injects into Br(XLi/Li).

Assuming that this has been done for i − 1; we define Li to be the func-

tion field Li−1(X). By Lemma 4.13, there is an α ∈ Br(Li(X)/Li) such

that Br(Li−1(X)/Li−1) ⊕ 〈α〉 ↪→ Br(Li(X)/Li). Since the index of XLi is p,

〈α〉 ∼= Z/p, and the induction step follows from the fact that

(Z/p)i−1 ⊂ Br(Li−1(X)/Li−1).

Let L = lim→ Li =
⋃

i Li. Clearly the natural restriction map Br(Li) → Br(L)

maps Br(Li(X)/Li) to Br(L(X)/L). I claim that this map is injective. Arguing

by contradiction, let us suppose there is an α ∈ Br(Li(X)/Li) with αL = 0. If A

is a central simple algebra in the class of α, then this says that the Severi–Brauer

variety SBA has an L-rational point [Sal99]. With respect to some projective

embedding of the variety SBA, this point has a finite number of coordinates,

which must therefore lie in some field Lj, for a sufficiently large integer j. But

this means SBA(Lj) �= ∅ and so Lj splits A. This implies that αLi = 0. But

this contradicts the injectivity of Br(XLi−1/Li−1) → Br(XLi/Li).

We therefore have
⋃
Br(Li(X)/Li) ⊂ Br(L(X)/L), which implies

(Z/p)∞ ⊂ Br(L(X)/L), as desired.

5. An explicit description of aX for genus 1 curves

Let E be an elliptic curve over k given on an affine patch by the equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

Let L/k be a G-Galois extension (which is no longer assumed to be the

entire absolute Galois group), and let γ ∈ Z1(G,E(L)) be a 1-cocycle (crossed

homomorphism) representing a homogeneous spaceX/k for E/k. That is to say,
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as G varieties, XL is isomorphic to EL with the Galois action σγ =
⊕

γ(σ) ◦σ,
where by

⊕
p we mean the automorphism of the elliptic curve given by addition

by p ∈ E. This means, for example, that for p ∈ E(L), we have σγ(p) =

γ(σ)⊕σ(p). With this in mind, we represent points in X(L) by points in E(L),

just with a different G-module structure.

For a function f ∈ L(X), where X is a G-variety, we have an action of σ ∈ G

on f by σ(f) = σ ◦ f ◦ σ−1, where the σ−1 is the action on X and the σ is

induced by the action on L. In particular, if we identify L(X) with L(E) with

a twisted action, we may write our action of σ ∈ G on f ∈ L(X) via

(12) σγ(f)(p) = σ ◦ f ◦ (σγ)−1(p) = σ ◦ f ◦ σ−1(p� γ(σ)).

5.1. Computations. The goal of this section is to explicitly describe the map

aX : E(k) → Br(X/k) described above in Theorem 2.1. Given an element

p ∈ E(k), this works in the following steps:

(1) Represent p as an element in (Pic0(XL))
G.

(2) Pull this element back to an element in Dp ∈ Div0(XL).

(3) Compute the coboundary ∂Dp as a 1-cocycle with values in Div0(XL).

(4) Realize these values as lying in principal divisors on X , i.e., for each

p, σ, find a function fp,σ ∈ L(X) whose divisor is ∂Dp(σ). This gives a

1-cochain fp(σ) = fp,σ.

(5) Let c̃p = ∂fp, and note that we may consider this as a 2-cocycle with

values in L∗ (i.e., values are constant). That is to say, choosing q ∈
X(L), we have a 2-cocycle cp(σ, τ) = c̃p(σ, τ)(q). This is our Brauer

group element.

It will be useful to have an explicit way to show that certain divisors are

principal. We begin with the following definition:

Definition 5.1: Suppose p, q ∈ E(L). Define the function lp,q ∈ L(E) in the

following way

• If p = q = ∞, then lp,q = 1.

• If p �= q = ∞, p = (x1, y1), then lp,q = x− x1.

• If p, q �= ∞, p = q = (x1, y1), then

lp,q = (y − y1)(2y1 + a1x1 + a3)− (x− x1)(3x
2
1 + 2a2x1 + a4 − a1y1).

• If p, q �= ∞, p �= q, p = (x1, y1), q = (x2, y2), then

lp,q = (y2 − y1)x − (x2 − x1)y + x2y1 − x1y2.
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Lemma 5.2: Let p1, p2 ∈ E(L), and let q = p1 ⊕ p2. Then(
lp1,p2

lq,�q

)
= p1 + p2 − q − 0E.

Proof. This is a routine verification. Note that lp,q is the equation of a line in

A2 which passes through the points p, q.

We now go through the above steps in sequence:

1. For p ∈ E(k), we represent p by the class of the divisor p − 0E ∈
(Pic0(XL))

G.

2. This is done already. The divisor is Dp = p− 0E.

3. Set dp = ∂(Dp). Explicitly, we have

dp(σ) = σγ(p− 0E)− (p− 0E)

= γ(σ)⊕ σ(p)− (γ(σ) + p) + 0E.

Since p ∈ E(k), σ(p) = p, and so we have

dp(σ) = γ(σ)⊕ p+ 0E − γ(σ)− p.

4. By Lemma 5.2, if we set

fp,σ =
lγ(σ)⊕p,�γ(σ)�p

lγ(σ),p
,

we have

(13) (fp,σ) = γ(σ)⊕ p+ 0E − γ(σ)− p = dp(σ),

so fp(σ) = fp,σ which gives a 1-cochain with values in L(X).

5. Let c̃p = ∂fp. By standard arguments, we in fact know that this func-

tion has values in L. Explicitly we have

cp(σ, τ) =
fp,σσ

γfp,τ
fp,στ

=
(fp,σ)(�γ(σ)f

σ
p,τ )

fp,στ
.

Remark 5.3: The only relevant issue about the functions fp,σ is that their as-

sociated principal divisor is described as in equation (13). In particular, we

may change the functions fp,σ by any constants and get an equivalent 2-cocycle

describing cp.

Theorem 5.4: Suppose p ∈ E(k). Then with the above notation

ap = (L/k,G, cp),
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where cp is given as

cp(σ, τ) =
(fp,σ)(�γ(σ)fp,τ )

fp,στ
.

We gather these facts in the following application:

Corollary 5.5: Suppose X is a genus 1 curve with Jacobian E and suppose

ind(X) = per(X). Let L/k be a Galois extension with group G and suppose

X(L) �= ∅. Then the relative Brauer group Br(X/k) is given by

(14) {[(L/k,G, cp)]|p ∈ E(k)},
where

(15) cp(σ, τ) =
(fp,σ)(�γ(σ)fp,τ )

fp,στ
,

and where the function fp,σ ∈ L(E) is defined by the expression

fp,σ =
lγ(σ)⊕p,�γ(σ)�p

lγ(σ),p
,

and the functions lp1,p2 are given in Definition 5.1.

Remark 5.6: In the case that the cocycle γ ∈ H1(L,E(L)) has values in E(k),

we may simplify our expression for the cocycle cp above by noting that the

functions fp,σ are in k(E) (using their explicit description above), and hence

are Galois invariant. We may therefore write in this case

cp(σ, τ) =
fp,σ(�γ(σ)fp,τ )

fp,στ
.

Remark 5.7: In the case that G = 〈σ | σm〉 is a cyclic group with generator

σ of order m, and the values of the cocycle are in E(k), we may simplify our

formula for cp significantly. Using the fact that cp is a cocycle with values in

k∗, one may check explicitly that in this case cp is cohomologous to c′p, where
for 0 ≤ i, j < n we have

c′p(σ
i, σj) =

⎧⎨
⎩1, i+ j < m,

cp(1, 1)cp(2, 1) · · · cp(m− 1, 1), i+ j ≥ m.

In particular, the central simple algebra represented by cp is the cyclic algebra

(L, σ, cp(1, 1)cp(2, 1) · · · cp(m− 1, 1)).



Vol. 192, 2012 RELATIVE BRAUER GROUPS OF GENUS 1 CURVES 943

5.2. Examples.

5.2.1. A hyperelliptic curve. We demonstrate this formula for the relative

Brauer group by reproducing an example of I. Han [Han03]. Let X be the

hyperelliptic genus 1 curve given by the affine equation y2 = ax4 + b, and

suppose X(k) = ∅. The Jacobian E of this curve is given by the Wierstrauss

equation y2 = x3−4abx. Let L = k(β), where β2 = b. We have (0,±β) ∈ X(L),

and so the index of X is 2 and hence is also equal to the period of X . Let the

order 2 group G =
〈
σ | σ2

〉
be the Galois group of L/k.

Note that the (non-identity) 2-torsion points of E are exactly those points

with y coordinate 0. These are

t0 = (0, 0), t+ = (0, 2λ), t− = (0,−2λ),

where λ2 = 4ab. In particular, we have three possibilities: λ ∈ k, λ ∈ L \ k, or
λ �∈ L. We will assume the second possibility holds, i.e., ab ∈ (L∗)2 \ (k∗)2.
Lemma 5.8: Define a 1-cocycle γ ∈ H1(G,E(L)) via γ(id) = 1, γ(σ) = t0.

Then γ corresponds to X viewed as a homogeneous space over E.

Proof. This is exactly [Sil92, Example 3.7, pages 293–295].

We will consider the case where rk(E) = 0. In this case, since the image of a is

entirely 2-torsion, im(a) = a(E(k)2), where E(k)2 is the 2-power torsion part of

E(k). On the other hand, since the only k-rational non-identity 2-torsion point

is t0, if there are other points in (k)2, there must be at least a 4-torsion point.

An explicit computation quickly shows, however, that this would contradict the

fact that ab is not a square (the line from t0 to the 4-torsion point would have

to be tangent at the 4-torsion point, and therefore its slope would have to be a

fourth root of 16ab). Consequently, we have

Br(X/k) = 〈at0〉 .
By Corollary 5.5, we have

A = at0 = (L/k,G, ct0),

with c = ct0 described as above. For this example we compute explicitly

ft0,id =
l0E⊕t0,�γ(id)�t0

lγ(σ),t0
=

lt0,t0
l0E ,t0

=
x

x
= 1,
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and

ft0,σ =
lγ(σ)⊕t0,�γ(σ)�t0

lγ(σ),t0
=

l0E ,0E

lt0,t0
=

1

x
.

Using q = t+ in formula (14) in Corollary 5.5, and using the fact that σ(t+) =

t−, we have

c(id, id) = c(id, σ) = c(σ, id) = 1,

c(σ, σ) = − 1

4ab
.

Therefore, the relative Brauer group Br(X/k) is generated by the algebra

A =(L/k, σ,−1/4ab) = (L/k, σ,−ab)

=(b,−ab)−1 = (b, a)−1 + (b,−b)−1 = (a, b)−1

and so Br(X/k) = {1, (a, b)−1}.

5.2.2. A curve of index 5. Let E be the elliptic curve over Q given by the

equation

y2 + y = x3 − x2 − 10x− 20.

One may check (for example, using Pari [par]) that the torsion subgroup of this

curve is Z/5Z, generated by g = (5, 5), and that its rank is 0. Let L/Q be any

cyclic degree 5 extension, say G = Gal(L/Q) =
〈
σ | σ5

〉
. Let γ ∈ H1(G,E(L))

be given by γ(σ) = g. The element γ corresponds to a homogeneous space X

for E, which is isomorphic to E if and only if γ is trivial. We will show:

Example 5.9: The relative Brauer group Br(X/Q) of the curve X is cyclic gen-

erated by the cyclic algebra (L/Q, σ, 11). In particular, if 11 is not a norm from

L, then X is not split.

Proof. This follows from direct computation with the above formulas. In par-

ticular, since for our curve E(Q) = 〈g〉, one need only check the 2-cocycle in

the image of the point g.

One may check that for our curve, we may use the functions fg,σi given by

fg,id = 1, fg,σ =
x− 16

5x− y − 20
, fg,σ2 =

x− 16

6x+ y − 35
,

fg,σ3 =
x− 5

−5x+ y + 20
, fg,σ4 =

1

x− 5
.
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Using Remark 5.6, we may express our cocycle cg as

cg(σ
i, σj) =

fg,σi(�gifq,σj )

fq,σi+j

.

With the aid of computational software ([par], [M2]), we may determine the

functions �gifq,σj . In particular, we have

�gfg,σ =
5x− y − 20

6x+ y − 35
, �g2fg,σ =

5x+ y − 19

6x− y − 36
,

�g3fg,σ =
x− 5

−5x− y + 19
, �g4fg,σ =

5− x

11
.

and by using Remark 5.7, we may find a cohomologous cocycle

c′g(σ
i, σj) =

⎧⎨
⎩1 if i+ j < 5,

1/11 if i+ j ≥ 5.

5.2.3. An example with noncyclic relative Brauer group. Using the computer

package [Kra07], we may construct other interesting examples by using curves

of rank 0 with interesting torsion subgroups. The following is the result of

output from this program:

Let E be the elliptic curve defined over Q by the affine equation

y2 + xy + y = x3 + x2 − 10x− 10.

Let L/Q be a cyclic Galois extension with generator σ of order 4. Given a torsion

point t ∈ E(k) of order n dividing 4, we may use it to define a homomorphism

Gal(L/k) → E(k) by sending the generator σ ∈ Gal(L/Q) to the torsion point

t. Via the map Hom(Gal(L/Q), E(k)) → H1(Q, E), this defines a principal

homogeneous space Xt.

For the elliptic curveE, pari/gp tells us that E is rank 0 with torsion subgroup

generated by the points (8, 18) of order 4 and (−1, 0) of order 2.

For the homogeneous space defined by t = �(8, 18), the relative Brauer group

is isomorphic to Z/4× Z/2, generated by the cyclic algebras:

aXt(8, 18) = (L/k, σ, 405) = (L/k, σ, 5),

aXt(−1, 0) = (L/k, σ,−81) = (L/k, σ,−1).
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Appendix A. Rational points over function fields

The following lemma is due to Nishimura [Nis55]:

Lemma A.1: Suppose X and Y are schemes over k such that Y is proper,

Y (k) = ∅, X is irreducible and x ∈ X(k) is a smooth point. Then Y (k(X)) = ∅.
Proof. The proof proceeds by induction on dim(X). Suppose that Y (k(X)) �= ∅.
Then there is a rational morphism φ : X ��� Y . If dim(X) = 0, then x = X

and φ gives an element of Y (k), contradicting our hypothesis Y (k) = ∅. For

the general induction step, let X̃ be the blowup of X at the point x and let

E ⊂ X̃ be the exceptional divisor. Since the map φ may be defined in a set

of codimension at least 2 and, in particular, by restricting this morphism to

E, we obtain a rational map E ��� Y . Since E ∼= Pdim(X)−1, E contains a

smooth k-point and is irreducible. Therefore, by letting E take the role of X ,

the induction hypothesis implies Y (k) �= ∅, contradicting our hypothesis and

completing the proof.

One consequence of this fact is that the index of projective varieties is not

changed by such field extensions:

Corollary A.2: Suppose Y is a projective variety, and X is a variety with a

smooth rational k-point. Then indY = indYk(X).

Proof. For a positive integer n, let Y [n] be the Hilbert scheme of n points on

Y . Since this is a projective scheme, Lemma A.1 tells us that Y [n](k) �= ∅ if

and only if Y [n](k(X)) �= ∅. Since the index of Y may be thought of as the gcd

of the set of positive integers n such that Y [n] has a rational point, we obtain

indY = indYk(X).

In particular, we obtain

Corollary A.3: Suppose X is a scheme defined over k with a smooth point

x ∈ X(k). Then the restriction map Br(k) → Br(k(X)) is injective.

Proof. Recall that for a central simple algebra A over a field F , A is split if and

only if the associated Severi–Brauer variety SBA has an F -point [Sal99]. There-

fore, if A is a central simple k algebra with [A] �= 0 in Br(k), then the variety

SBA has no k-points. If the algebra is split by k(X), then this implies SBA does
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have a point over k(X). Since SBA is a proper variety, this would contradict

Lemma A.1. Therefore, we must have SBA(k(X)) = ∅ and [A]k(X) �= 0.
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